

Which is the best immune approach to replace ASCT ? CAR T or BiTEs ? BiTEs !!

Hermann Einsele Department of Internal Medicine II University Hospital Würzburg

Agenda

Will immunotherapy replace ASCT or consolidate ASCT ?

Why maintain ASCT ?

- World-wide access
- Cost-benefit ratio
- Low TRM
- In SR MM long term disease control Cure fraction
- Increase the cure rate by combination therapy !

BiTEs vs CAR T

- Availability
- Drug variability/precise dosing
- One shot therapy vs treatment until PD
- Efficacy/Safety
- Resistance mechanisms

Martinez-Lopez J et al., Blood 2011

Bispecific Antibodies/T Cell Engagers (TCE) (vs CAR T cells)

The poor man's CAR T cells Treatment forever! Less effective! Only for elderly/frail patients!

The race is on !!

BiTEs vs CAR Ts

T Cell Engaging Antibodies Off the shelf

What do you want?

Precise dosing s.c./i.v. application Application qW, q2W, q3W etc.? Which target? BCMA/GPRC5D/FcHR5/CD38?

Do we need to give BiTes until PD? No!

Retreatment with BiTEs possible/effective!

Max. response in all our patients after 1-3 mo. (4-12 applications of BCMA-BiTEs)

Pt	Age	Initial treatme	nt		Intervening alloHSCT	Retreatment			RFS (months)	Overall survival (months)
		Daily dose	Response duration (months)	Blasts at relapse		Daily dose	Grade ≥3 neurologic event	Best hematologic response		
1	12	15–30 μg/m²	12.4	_		5–15 μg/m²		PD		0.7
2	4	5–15 µg/m²	3.4	93%	Yes	5–15 μg/m²		No response		6.7
5 in 5 3	itial out	treatme of 4 res	ent! ponding	patien	ts still al	ive up to	o 20 mo	. post ret	reatm	ent !
6	02	15 µg/m-			res	15 μg/m-		СКП	3.9	4.0
7	21	5–15 μg/m²	10.6	10%		5–15 μg/m²	Yes	-		12.3
8	20	9–28 μg	14.2	<u> </u>		9–28 µg	Yes	CR	1.7	3.7
9	29	9–28 μg	10.5	-	Yes	9–28 μg		PD		0.7
10	26	9–28 μg	5.1	<u> </u>	Yes	9–28 µg		PD		1.8
11	25	9–28 μg	11.3	—	Yes	9–28 μg		CRh	3.7	4.6
									3.8	4.0
									5.0	9.4
									(1.7, 8.6)	9.4 (0.7, 12.9)

Topp MS et al., Leukemia 2017

Response-adapted therapy and retreatment

 \rightarrow Reduce duration of therapy / T cell exhaustion/toxicity esp. infectious complications

CAR T Cell Therapy in MM: One shot treatment? No

Long-term persistence of CAR Ts, long term disease control/cure?

But: BCMA-CAR T limited persistence

CAR T Cell persistence over time

	Month 1	Month 3	Month 6	Month 12
No. at risk	24	22	23	10
No. (%) with detectable vector	23 (96)	19 (86)	13 (57)	2 (20)

All 33 patients were included in the analysis. Data from samples with <50 ng total DNA input were excluded.

Raje N et al., NEJM 2019

CAR T Cell Therapy for MM

Combination Therapy (continuous therapy)

- IMiD/CelMODs
- Immune Checkpoint Blockers
- Anti-CD38 Ab ± IMiDs
- TKI, e.g. Ibrutinib

BCMA-directed CAR T Cell Therapeutics vs BCMA-directed Bispecifics

Efficacy/Toxicity

	CAR T	Bispecifics
ORR	80 - 100 %	>60 - 83 %
CR	40 - 85 %	13 - 50 %
PFS	> 1 - 1,5 yrs	> 6 mo.
CRS Gr. 3	3 - 6 %	0 - 3 %
ICANS Gr. 3	3 - 10 %	0 - 1 %

Following CAR T Cell Therapy grade 3 cytopenia can last for of 2-3 months !!

→ Hematotoxicity clearly less frequent/less severe/shorter after BiTEs vs CART cells

Munshi N et al. NEJM 2012; Madduri D et al. ASH 2020 #177; Garfall AL et al. ASH 2020 #180; Lesokhin AM et al. ASH 2020 #3206; Madduri D et al. ASH 2020 #291; Rodriguez et al. ASH 2020 #293; Chari A et al. ASH 2020 #290; Cohen AD et al. ASH 2020 #292; Harrison S et al. ASH 2020 #181; Costello C et al. ASH 2020 #134; Kumar et al. ASH 2020 #133; Piasecki et al. ASH 2020 #2350; Colonna et al. ASH 2020 #2358.

But: Few patients treated with BiTEs in highest dose level: In some trials MTD not reached! Short follow up for bispecifics!

Treatment of elderly patients?

Inclusion:			Ide-cel (all treated) N=128	Cita-cel N=97	Bispecific mAbs (pooled data)
	Age, mediu	m	61 yrs (up to 78)	60 yrs (up to 75)	64 yrs (up to 88)
Munshi NC et al., J Clin Oncol 2020; Berdeja JG et al., J Clin Oncol 2020; Mailankody S et al., J Clin Oncol 2020; Costa LJ et al., EHA 2020; Usmani SF et al., J Clin Oncol 2020			resulted in an ORR of ents > 65 yrs (n=45): ents ≥ 70 yrs (n=20): rability, PFS and DoR ulation	73 % 84 % 90 % are comparable with	the ITT

Bispecific TCE successful and safe in frail patients !

	Characteristics	1L DLBCL (N=29)
	Median age, years (range) Age ≥80, n (%) Age <80, n (%)	82 (67–100) 21 (72) 8 (28)
Mosunetuzumab	Female, n (%)	21 (72)
CD20xCD3-BiTE	IPI score ≥3, n (%)	15 (52)
	ECOG PS, n (%) 0 1 2	5 (17) 15 (52) 9 (31)

Summary of CRS	1L DLBCL (N=29)
Any grade, n (%) Grade 1 Grade 2	6 (21) 5 (17) 1 (3)
Hypotension related to CRS, n (%)	1 (3)
No TRM!	0

Olszewski A et al., ASH 2020, Abstract #401

Antigen escape in BCMA CAR T Cell Therapy for MM

Homozygous *BCMA* gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma

Matteo C. Da Vià¹, Oliver Dietrich[®]², Marietta Truger³, Panagiota Arampatzi[®]⁴, Johannes Duell¹, Anke Heidemeier⁵, Xiang Zhou¹, Sophia Danhof[®]¹, Sabrina Kraus¹, Manik Chatterjee¹, Manja Meggendorfer³, Sven Twardziok³, Maria-Elisabeth Goebeler¹, Max S. Topp¹, Michael Hudecek[®]¹, Sabrina Prommersberger[®]¹, Kristen Hege⁶, Shari Kaiser⁶, Viktoria Fuhr⁷, Niels Weinhold⁸, Andreas Rosenwald⁷, Florian Erhard[®]⁹, Claudia Haferlach³, Hermann Einsele[®]¹, K. Martin Kortüm[®]¹, Antoine-Emmanuel Saliba[®]² and Leo Rasche[®]¹⁰[™]

B cell maturation antigen (BCMA) is a target for various immunotherapies and a biomarker for tumor load in multiple mayloma (MM) We ranort a case of irrowarshipe BCMA loss bas vet to be elucidated 719 Cite-Seq Profiling of T Cells in Multiple Myeloma Patients Undergoing BCMA Targeting CAR-T or Bites Immunotherapy

Program: Oral and Poster Abstracts Type: Oral Session: 651. Myeloma: Biology and Pathophysiology, excluding Therapy II Hematology Disease Topics & Pathways: multiple myeloma, Biological, Diseases, CAR-Ts, Therapies, Biological Processes, Technology and Procedures, Plasma Cell Disorders, immunotherapy, Lymphoid Malignancies, Clinically relevant, immune mechanism, integrative -omics, NGS, RNA sequencing

Monday, December 7, 2020: 1:30 PM

Noemie Leblay, PhD^{1*}, Ranjan Maity, PhD^{1*}, Elie Barakat^{1*}, Sylvia McCulloch, MD, MSc², Peter Duggan, MD, FRCPC², Victor Jimenez-Zepeda, MD², Nizar Bahlis, MD³ and Paola Neri, MD¹

Antigen escape is a common mechanism of escape after CART19 in particular in ALL (40-75%), but also in DLBCL (~30%)

Check for updates

ARTICLE

https://doi.org/10.1038/s41467-021-21177-5 OPEN

Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma

Mehmet Kemal Samur () ^{12,3^{ID}}, Mariateresa Fulciniti () ³, Anil Aktas Samur () ¹², Abdul Hamid Bazarbachi () ^{3,4}, Yu-Tzu Tai () ³, Rao Prabhala³⁵, Alejandro Alonso³, Adam S. Sperling³, Timothy Campbell⁶, Fabio Petrocca⁷, Kristen Hege⁶, Shari Kaiser⁸, Hervé Avet Loiseau⁹, Kenneth C. Anderson () ³ & Nikhil C. Munshi () ^{3,5^{ID}}

BCMA targeting chimeric antigen receptor (CAR) T cell therapy has shown deep and durable responses in multiple myeloma. However, relapse following therapy is frequently observed,

HOMOZYGOUS BCMA LOSS IN RESPONSE TO T-CELL ENGAGERS (TCE)

Truger MS et al. Blood Adv 2021

How to deal with BCMA loss?

Produce CAR T cells targeting surface antigens beyond BCMA on MM

→ But: Time-consuming production / successful production after CAR T cell failure?

Off-the shelf Bispecific T cell engagers available against various surface antigens:

- BCMA
- GPRC5D
- FcHR5
- CD38
- ightarrow Can they be used sequentially?

Patient Case

	Ves		Treatment:		
	After failure of BCMA BiTF targeting		02/2011	3x PAD	
	BiTEs targeting other MM-surface Ag		05/u.08/2011	Tandem-Mel \rightarrow CR	
	with BiTEs like GPRC5D/FcHR5 have		4/14	PD \rightarrow RD 6 cycles	
	been sucessful		12/15 - 12/16	$RD \rightarrow 16$ cycles	
				Panobinostat/Bortezomib/Dexa $ ightarrow$ PD)
OFr.lambda-Lei mg/i	ichtk (SPA PLUS)		05 – 11/17	6x Ixa/Thal/Dex → PD	
999.54			11 – 12/12	$1x \text{ Rd} \rightarrow \text{PD}$	
			01/18	BCMA-Bite (AMG420) → sCR	
			09/19	$PD \rightarrow KRd \ 18x$	
	°		07/20	$PD \rightarrow Dara/Vel/Dex \rightarrow PD$	
			12/20	Belantamab \rightarrow PD	
		sCR		(Documented irreversible BCMA-loss	s)
26:30			12/20	VTD-PACE $3x \rightarrow PD$	
29.05.202	31/2 11/2 21/20 1 1 Monat	29.06.2021	\rightarrow GPRC5D-targetir	ng BiTE!	

Bispecific Antibodies/T Cell Engagers (TCE) vs CAR T cells

The race is finished !!

And the winner is: Bispecific T cell engager (BiTE)!

Take home message

Bispecific Antibodies/T Cell Engagers (TCE)

= Best immune approach to replace or consolidate ASCT

- Better availability (off the shelf vs time consuming production)
- Precise dosing (vs drug variability)
- Broad range of specificities as off the shelf products (vs long production time/failure)
- Better tolerability (CRS/ICANS/hematotoxicity)
- Retreatment more successful with BiTEs
- Duration of treatment not necessarily longer (optimal response after 1-3 mo BiTE therapy vs CAR T cells > 2 mo therapy)
- Efficacy similar with further dose escalation of Bites or combination therapies ?

Retreatment with CAR T Cells

Tumor Response and Progression-Free Survival in All Enrolled Patients and Retreated Patients

	Total Enrolled (N=140)	Total Retreated (N=28)
Best overall response—no. (%)	94 (67)	6 (21)
Stringent complete response	41 (29)	0
Complete response	1 (1)	0
Very good partial response	25 (18)	1 (4)
Partial response	27 (19)	5 (18)
Stable disease	22 (16)	5 (18)
Progressive disease	8 (6)	15 (54)
Not evaluable*	14 (10)	2 (7)
Median progression-free survival (95% CI)—mo	9.5 (6.9–12.5)	1.0 (1.0-2.1)

Retreatment with CAR T cells (at least the same product) of limited value!

BCMA-directed CAR T Cell Therapeutics vs BCMA-directed Bispecifics

	CA	RT			
	lde-Cel ²	Cilta-Cel ¹	CC-93268⁵	Teclistamab⁴	AMG 701 ³
Neutropenia Grade ≥ 3	89%	80%	43%	44%	25%
Anemia Grade ≥ 3	60%	45%	37%	26%	42%
Thrombocytopenia Grade ≥ 3	52%	45%	17%	21%	21%

Following CAR T Cell Therapy grade 3 cytopenia can last for of 2-3 months!!

→ Hematotoxicity clearly less frequent/less severe/shorter after BiTEs vs CART cells

- 1. Berdeja J et al., Lancet 2021
- 2. Munshi N et al., NEJM 2021
- 3. Harrison S et al., ASH 2020 Abstract#181
- 4. Krishnan A et al., ASCO 2021 Abstract#8007
- 5. Costa LJ et al., ASH 2019 Abstract#143