Overall Survival and Progression-free Survival by Treatment Duration With Daratumumab + Lenalidomide/Dexamethasone in Transplantineligible Newly Diagnosed Multiple Myeloma: Phase 3 MAIA Study*

Philippe Moreau, ¹ Thierry Facon, ² Shaji K. Kumar, ³ Torben Plesner, ⁴ Robert Z. Orlowski, ⁵ Nizar Bahlis, ⁶ Supratik Basu, ⁷ Hareth Nahi, ⁸ Cyrille Hulin, ⁹ Hang Quach, ¹⁰ Hartmut Goldschmidt, ¹¹ Michael O'Dwyer, ¹² Aurore Perrot, ¹³ Christopher P. Venner, ¹⁴ Katja Weisel, ¹⁵ Joseph R. Mace, ¹⁶ Noopur Raje, ¹⁷ Mourad Tiab, ¹⁸ Margaret Macro, ¹⁹ Laurent Frenzel, ²⁰ Xavier Leleu, ²¹ Huiling Pei, ²² Brenda Tromp, ²³ Maria Delioukina, ²⁴ Saad Z. Usmani²⁵ ¹Hematology, University Hospital Hôtel-Dieu, Nantes, France; ²University of Lille, CHU Lille, Service des Maladies du Sang, Lille, France; ³Department of Hematology, Mayo Clinic Rochester, Rochester, NN, USA; ⁴Vejle Hospital and University of Southern Denmark, Vejle, Denmark, ⁵Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁶Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, Canada; ⁷The Royal Wolverhampton Hospitals NHS Trust and University of Wolverhampton, WOlverhampton, UK; ⁸Karolinska Institute, Department of Medicine, Division of Hematology, Karolinska University Hospital at Huddinge, Stockholm, Sweden; ⁹Department of Hematology, Hôpital Haut Lévêque, University Hospital, Pessac, France; ¹⁰University of Melbourne, St Vincent's Hospital, Melbourne, Australia; ¹¹University Hospital Heidelberg, Internal Medicine V and National Center for Tumor Diseases (NCT), Heidelberg, Germany; ¹²Department of Medicine/Haematology, NUI, Galway, Republic of Ireland; ¹³CHU de Toulouse, IUCT-O, Université de Toulouse, UPS, Service d'Hématologie, Toulouse, France; ¹⁴Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada; ¹⁵Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ¹⁶Florida Cancer Specialists, St. Petersburg, FL, USA; ¹⁷Center for Multiple Myeloma, Massachusetts General Hospital Cance

Disclosure Statement: Philippe Moreau, MD

Advisory boards: Amgen, Celgene/Bristol Myers Squibb, Janssen, Oncopeptides, and Sanofi

Honoraria: Amgen, Celgene/Bristol Myers Squibb, Janssen, Oncopeptides, and Sanofi

Introduction

- The PFS benefit of daratumumab in combination with standard of care versus standard of care alone in patients with NDMM was established in the phase 3 ALCYONE, MAIA, and CASSIOPEIA studies¹⁻³; the OS benefit of a daratumumab-based regimen in patients with NDMM was also established in the ALCYONE study⁴
- VRd was established as a standard-of-care regimen for elderly patients based on results of the phase 3 SWOG S0777 study in patients with NDMM without intent for immediate transplant (69% of whom were intended for eventual transplant)⁵
 - At a median follow-up of 84 months, the median PFS was 41 months for VRd and 29 months for Rd (HR, 0.742); median OS was not reached versus 69 months, respectively (HR, 0.709)⁶
 - 43% of patients in SWOG S0777 were ≥65 years of age (compared with 99% in MAIA); however, a significant OS benefit was not observed in this subgroup for VRd versus Rd (median, 65 months vs 56 months; HR, 0.769; P = 0.168)⁶
- Real-world data indicate that >50% of transplant-ineligible elderly patients with NDMM do not receive any subsequent therapy; this suggests that the most effective therapy should be used upfront and not saved for relapse,⁷ at which time additional genetic mutations conferring resistance may have been acquired⁸
- In a previous MAIA update (Kumar SK, et al. ASH 2020), D-Rd prolonged PFS and PFS2 versus Rd alone in transplantineligible patients with NDMM; OS data were not yet mature⁹

Here, we report updated efficacy and safety results from a pre-specified interim OS analysis of MAIA and a post hoc analysis of PFS by treatment duration after a median follow-up of approximately 56 months

PFS, progression-free survival; NDMM, newly diagnosed multiple myeloma; OS, overall survival; VRd, bortezomib/lenalidomide/dexamethasone; Rd, lenalidomide/dexamethasone; HR, hazard ratio; D-Rd, daratumumab plus lenalidomide/dexamethasone; PFS2, progression-free survival on the next subsequent line of therapy.

^{1.} Mateos MV, et al. *N Engl J Med*. 2018;378(6):518-528. 2. Facon T, et al. *N Engl J Med*. 2019;380(22):2104-2115. 3. Moreau P, et al. *Lancet*. 2019;394(10192):29-38. 4. Mateos MV, et al. *Lancet*. 2020;395(10218):132-141. 5. Durie BGM, et al. *Lancet*. 2017;389(10068):519-527. 6. Durie BGM, et al. *Blood Cancer J*. 2020;10(5):53. 7. Fonseca R, et al. *BMC Cancer*. 2020;20(1):1087. 8. Suzuki K, et al. *Cancers (Basel)*. 2021;13(2):215. 9. Kumar SK, et al. *Blood*. 2020;136(suppl 1):24-26.

MAIA Study Design

• Patients were enrolled in MAIA from March 2015 through January 2017

MAIA is a multicenter, randomized, open-label, active-controlled, phase 3 study of D-Rd versus Rd alone in patients with NDMM who are transplant ineligible

TIE, transplant-ineligible; ECOG PS, Eastern Cooperative Oncology Group performance status; CrCl, creatinine clearance; IV, intravenous; QW, once weekly; Q2W, once every 2 weeks; Q4W, once every 4 weeks; PD, progressive disease; PO, oral; ORR, overall response rate; CR, complete response; sCR, stringent complete response; MRD, minimal residual disease; NGS, next-generation sequencing; BMI, body mass index.

^aOn days when daratumumab is administered, dexamethasone will be administered to patients in the D-Rd arm and will serve as the treatment dose of steroid for that day, as well as the required pre-infusion medication. ^bFor patients >75 years of age or with BMI <18.5 kg/m², dexamethasone was administered at a dose of 20 mg QW.

Demographics and Baseline Characteristics (ITT)

	D-Rd (n = 368)	Rd (n = 369)
Age		
Median (range), y	73 (50-90)	74 (45-89)
Distribution, n (%)		
<65 y	4 (1)	4 (1)
65-<70 y	74 (20)	73 (20)
70-<75 y	130 (35)	131 (36)
≥75 y	160 (43)	161 (44)
Male, n (%)	189 (51)	195 (53)
ECOG PS score, ^a n (%)		
0	127 (35)	123 (33)
1	178 (48)	187 (51)
2 ^b	63 (17)	59 (16)
ISS stage, ^c n (%)		
1	98 (27)	103 (28)
II	163 (44)	156 (42)
III	107 (29)	110 (30)

	D-Rd (n = 368)	Rd (n = 369)
Type of measurable disease, n (%) IgG IgA Other ^d Detected in urine only Detected as serum-free light chain only	225 (61) 65 (18) 9 (2) 40 (11) 29 (8)	231 (63) 66 (18) 10 (3) 34 (9) 28 (8)
Cytogenetic profile,^e n/total n (%) Standard risk High risk	271/319 (85) 48/319 (15)	279/323 (86) 44/323 (14)
Median time since initial diagnosis of MM (range), months	0.95 (0.1-13.3)	0.89 (0-14.5)

Demographics and baseline characteristics were well balanced between arms

ITT, intention-to-treat.

^aECOG PS is scored on a scale from 0 to 5, with 0 indicating no symptoms and higher scores indicating increasing disability. ^bTwo patients had an ECOG PS score >2 (1 patient each with an ECOG PS score of 3 and 4). ^cISS stage is derived based on the combination of serum β₂-microglobulin and albumin; higher stages indicate more severe disease. ^dIncludes IgD, IgE, IgM, and biclonal. ^eCytogenetic abnormalities were identified by fluorescence in situ hybridization or karyotype testing; high risk was defined as having a t(4;14), t(14;16), and/or del17p abnormality.

Note: percentages may not add up to 100% due to rounding.

Treatment Exposure and Patient Disposition

Median duration of follow-up: 56.2 months

Safety population (received ≥1 dose of study treatment)	D-Rd (n = 364)	Rd (n = 365)	ITT population	D-Rd (n = 368)	Rd (n = 369)
Median duration of study treatment, months (range)	47.5 (0.10-69.26)	22.6 (0.03-69.22)	Remaining on study treatment, %	42	18
Lenalidomide median RDI, % (range)	66 (8-206)	86 (5-239)	Discontinued study treatment, %	57	81
Discontinued lenalidomide only while continuing other study treatment, n (%)	33 (9)	14 (4)	Progressive disease Adverse event Death	27 13 7	34 23 7
IV daratumumab median RDI, % (range)	98 (3-107)	-	Noncompliance with study drug Physician decision	5	8
Discontinued daratumumab only while continuing other study treatment, n (%)	5 (1)	_	Other Lost to follow-up Patient withdrawal	4 1 <1 0	0 1 1 2

42% of patients in the D-Rd arm and 18% of patients in the Rd arm remained on treatment; more patients in the Rd arm than in the D-Rd arm discontinued due to AEs **ORR**^a

- D-Rd induced deeper responses, with significantly higher rates of ≥CR and ≥VGPR, compared with Rd
- With >28 months of additional follow-up, responses deepened with continued daratumumab therapy

VGPR, very good partial response; PR, partial response; OR, odds ratio.

^aITT population. ^bP <0.0001; P values were calculated from the Cochran–Mantel–Haenszel chi-squared test.

^{1.} Facon T, et al. N Engl J Med. 2019;380(22):2104-2115.

Note: percentages may not add up to the total due to rounding.

Updated PFS

- D-Rd continued to demonstrate a significant PFS benefit, with median PFS not reached with D-Rd
 - These data provide a new PFS benchmark in patients with NDMM who are transplant ineligible

PFS by Duration of Treatment^a

D-Rd showed a robust PFS benefit among patients treated for ≥18 months, with a 43% reduction in the risk of disease progression or death and a 20% increase in PFS rate at 60 months

D-Rd 368 350 346 344 338 334 328 316 305 302 297 286 280 273 266 255 249 228 170 118 63 22 6 1 0

D-Rd demonstrated a significant benefit in OS, with a 32% reduction in the risk of death, in patients with NDMM who are transplant ineligible

 $^{a}P = 0.0013$ is statistically significant, crossing the pre-specified stopping boundary of P = 0.0414.

Subgroup Analysis of OS

	D-Rd No. of tota	Rd deaths/ I no.	D-Rd Media (mor	Rd In OS hths)		HR (95% CI)		D-Rd No. of tota	Rd deaths/ I no.	D-Rd Media (mo	Rd an OS nths)		HR (95% CI)
Sex							ISS disease stage						
Male	71/189	88/195	NE	57.2	L⊕+I	0.78 (0.57-1.06)	1	19/98	24/103	NE	NE	⊢ e¦	0.79 (0.43-1.44)
Female	46/179	68/174	NE	NE	F⊕-1¦	0.58 (0.40-0.84)	Ш	50/163	60/156				
Age							11	50/103	09/100				0.01 (0.42-0.00)
<75 years	52/208	80/208	NE	NE	⊢●┤¦	0.60 (0.42-0.85)	III	48/107	63/110	62.8	47.3	⊢ ●- <u></u> ^µ	0.72 (0.49-1.04)
≥75 years	65/160	76/161	NE	55.7	⊢●┦	0.76 (0.55-1.06)	Type of MM					I I	
Race							laG	74/225	90/231			ı ⊾ ≞ 4	0.80 (0.50-1.00)
White	106/336	138/339	NE	NE	ŀ€ł¦	0.71 (0.55-0.91)	igo	14/220	50/201				0.00 (0.00-1.00)
Other	11/32	18/30	NE	49.1	⊢_●]	0.48 (0.23-1.03)	Non-IgG	22/74	37/76	NE	53.7	┣━╋━┥ _╎	0.50 (0.30-0.86)
Region							Cytogenetic risk at s	study entry				I I	
North America	33/101	46/102	NE	55.7	⊢●┥	0.63 (0.40-0.98)	High risk	25/48	26/44	55.6	42 5	⊢_ e └I	0 80 (0 46-1 39)
Other	84/267	110/267	NE	NE	⊢●H	0.70 (0.53-0.93)	Chan dand viels	20/10	440/070				
Baseline renal funct	tion (CrCl)						Standard risk	80/271	116/279	NE	NE	Feri	0.64 (0.48-0.85)
>60 mL/min	59/206	89/227	NE	NE	⊢●⊣¦	0.66 (0.48-0.92)	ECOG PS score					1	
≤60 mL/min	58/162	67/142	NE	54.8	⊢●-i	0.67 (0.47-0.96)	0	24/127	36/123	NE	NE	⊢●┥	0.61 (0.36-1.02)
Baseline hepatic fur	nction						1	64/178	82/187	NE	58 3	Le i	0 74 (0 53-1 03)
Normal	104/335	144/340	NE	NE	H€H	0.65 (0.51-0.84)		04/170	02/10/		00.0		0.74 (0.00 1.00)
Impaired	13/31	12/29	NE	NE	⊢	1.05 (0.48-2.30)	≥2	29/63	38/59	62.8	39.0		0.57 (0.35-0.94)
				Г		n							ŋ
				0.1	1.0	10					0.1	1.0	10
				•	←	→					•	└──── ────	→
				D-F	Rd arm better Rd a	rm better					D-Ro	d arm better Rd arm	1 better

OS benefit with D-Rd was generally consistent across patient subgroups

Subsequent Therapy

- Median time to next treatment was not reached with D-Rd versus 42.4 months with Rd (HR, 0.47; 95% Cl, 0.37-0.59; P < 0.0001)
- 114 patients in the D-Rd arm and 186 patients in the Rd arm received subsequent therapy; of these:
 - A PI-containing regimen without an IMiD was the most common first subsequent therapy (53% vs 54% with D-Rd and Rd, respectively)
 - 15% of patients in the D-Rd arm and 46% of patients in the Rd arm received a daratumumab-containing regimen as any subsequent line of therapy

Most Common (>5%) Grade 3/4 TEAEs (Safety Population)^a

197 (54) 61 (17) 60 (16) 42 (12)	135 (37) 79 (22) 41 (11) 23 (6)
32 (9)	34 (9)
70 (19) 46 (13) 40 (11) 32 (9) 32 (9) 31 (9) 28 (8) 26 (7) 19 (5) 19 (5)	39 (11) 36 (10) 39 (11) 22 (6) 17 (5) 16 (4) 14 (4) 19 (5) 17 (5) 12 (3)
	$ \begin{array}{c} 197 (54) \\ 61 (17) \\ 60 (16) \\ 42 (12) \\ 32 (9) \\ \\ \end{array} $ $ \begin{array}{c} 70 (19) \\ 46 (13) \\ 40 (11) \\ 32 (9) \\ 32 (9) \\ 32 (9) \\ 31 (9) \\ 28 (8) \\ 26 (7) \\ 19 (5) \\ 19 (5) \\ 19 (5) \\ 19 (5) \\ \end{array} $

No new safety concerns were identified with longer follow-up

TEAE, treatment-emergent adverse event.

^aMedian duration of study treatment was 47.5 months in the D-Rd arm and 22.6 months in the Rd arm. Data are not exposure adjusted.

Conclusions

- After almost 5 years of follow-up, a significant OS benefit of D-Rd versus Rd given to progression was demonstrated in patients with transplant-ineligible NDMM, representing a 32% reduction in the risk of death
 - The estimated 5-year OS rate was 66.3% with D-Rd and 53.1% with Rd, which will likely lead to a substantial improvement of median OS in this patient population
- The significant PFS benefit of D-Rd versus Rd was maintained, with a 47% reduction in the risk of disease progression or death (median PFS for D-Rd, not reached)
 - The estimated 5-year PFS rate was 52.5% with D-Rd and 28.7% with Rd
 - These data provide a new PFS benchmark in patients with NDMM who are transplant ineligible
 - In a post hoc analysis, D-Rd showed a robust PFS benefit versus Rd among patients treated for ≥18 months
- These PFS and OS results have been achieved in a study population with 44% of patients aged 75 to 90 years
- No new safety concerns were identified with continuous therapy and longer follow-up

These results strongly support upfront D-Rd as a new standard of care for patients with transplant-ineligible NDMM

Acknowledgments

- Patients who participated in this study
- All investigators who contributed to the study
 - Intergroupe Francophone du Myélome
- Staff members at the study sites
- Data and safety monitoring committee
- Staff members involved in data collection and analyses
- Other ongoing frontline registration daratumumab studies include:
 - Transplant ineligible: CEPHEUS (D-VRd)
 - Transplant eligible: PERSEUS (D-VRd)

MAIA

D-VRd, daratumumab plus bortezomib/lenalidomide/dexamethasone.

This study (ClinicalTrials.gov Identifier: NCT02252172) was sponsored by Janssen Research & Development, LLC.

Editorial and medical writing support were provided by Austin Horton, PhD, of Cello Health Communications/MedErgy, and were funded by Janssen Global Services, LLC.